Spinsolve[®] 90

Quinine

Quinine is a drug used to treat a variety of conditions, most notably malaria. It is listed as one of the WHO's (World Health Organization's) "Essential Medicines". Figure 1 shows the ¹H NMR spectrum of a 250 mM Quinine in CDCl₃ measured in a single scan taking 10 seconds to acquire.

1D Proton spectrum

Figure 1: ¹H NMR spectrum of a 250 mM Quinine in CDCl₃ measured on a Spinsolve 90 MHz system in a single scan.

1D Carbon spectrum

Figure 2 shows the ¹³C NMR spectrum of 250 mM Quinine in CDCl₃ acquired using NOE polarization transfer from ¹H to ¹³C and ¹H decoupling. The 1D Carbon experiment using NOE is sensitive to all ¹³C nuclei in the sample. It clearly resolves all the expected resonances.

Figure 2: ¹³C NMR spectrum of a 250 mM Quinine in CDCl₃ measured on a Spinsolve 90 MHz system in 120 minutes.

Spinsolve[®] 90

2D COSY spectrum

The 2D COSY experiment allows one to identify coupled ¹H nuclei as they generate cross peaks out of the diagonal of the 2D data set. In Figure 3 a large number of cross peaks can be nicely observed. For example, the proton at position 13 couples to proton 12 (dark blue), the protons 16 and 18 couple to proton 20 (orange), proton 18 couples to proton 19 (light green), proton 2 couples with protons 1 (pink) and proton 3 (light blue). In addition, the coupling between protons 3 and 9 (dark green) and protons 6 and 10 (red) can be observed.

Figure 3: ¹H 2D COSY experiment of a 250 mM Quinine in CDCl₂ acquired in 6.5 minutes on a Spinsolve 90 MHz system.

2D HSQC-ME

The HSQC is a powerful sequence widely used to correlate ¹H with the one-bond coupled ¹³C nuclei. The Spinsolve is equipped with a multiplicity edited version (HSQC-ME) of this method. It provides the editing power of the DEPT-135 sequence, which is useful to differentiate the signals of CH₂ groups (blue) from CH and CH₃ groups (red). Figure 4 shows the HSQC-ME spectrum of a 250 mM Quinine in CDCl₃ acquired in 4 minutes. The measurement time was optimized applying NUS (non uniform sampling).

Figure 4: HSQC-ME spectrum of a 250 mM Quinine sample in $CDCl_3$ showing the correlation between the ¹H (horizontal) and ¹³C (vertical) signals.

Spinsolve[®] 90

2D HMBC

To obtain long-range ${}^{1}H_{-}{}^{13}C$ correlations through two or three bond couplings, the Heteronuclear Multiple Bond Correlation (HMBC) experiment can be used. Figure 5 shows the HMBC spectrum of a 250 mM Quinine sample measured in 34 minutes on our Spinsolve 90 MHz. As an example, the long-range correlations of proton 13 with carbons 12 (dark blue), 14 (light green) and 11 (red), as well as the couplings of proton 19 with carbons 15 (light blue) and 17 (pink), the coupling of proton 12 with carbon 10 (orange) and protons 20 with carbon 17 (dark green) are marked with circles. The experiment shows the correlation with quaternary carbons, too.

Figure 5: HMBC spectrum of a 250 mM Quinine sample in CDCl₃ showing the long-range couplings between ¹H and ¹³C nuclei.

